2. Development of fibre-matrix bond on single fibre pull-out

Description

Investigation on the evolution of the performance of SFRC during the hardening process of concrete. The study focuses on characterizing the "maturity-dependent" performance of steel fibres subject to pull-out and correlate it to the development of the mechanical properties of the matrix (i.e. compressive strength, tensile strength, Young's modulus).

Aim and objectives

The aim of this project is to characterize the evolution of the fibre-matrix bond performance during the hydration of the matrix. The following objectives are defined:

- 1- Summarize and categorize the existing literature on the evolution of residual-tensile performance of SFRC and "maturity-dependence" of the pull-out behaviour of a single steel fibre.
- 2- Optimize the operation of the existing standard test-setup for the execution of fibre pull-out testing.
- 3- Characterize the pull-out performance of commercial fibres at different concrete maturities (i.e. 2-5-7-14-28-56 days). Correlate these values with measured concrete properties at same ages.

Methodology

In order to fulfil the abovementioned aim and objectives, the study will comprise the following tasks:

- 1- Literature review: Identification, classification and summary of scientific literature
- 2- Experimental study: Pull-out testing on standard test-rig at 119
- 3- Analysis of results: Descriptive statistics of the experimental data, regression model of exp. datasets.

Minimum requirements

The project is oriented to BSc education level, preferably a group of 2 students. The students are expected to be able to work independently on theoretical, organizational and practical level (introduction to tasks will be provided). The specific requirements for accessing this project are:

- 1- Intermediate English level on a technical basis, and understanding of scientific and technical literature
- 2- Basic-level programming skills (e.g. Matlab, R) and intermediate-advanced informatics skills (text processing, excel etc.)
- 3- Intermediate-level on statistics (exploratory statistics at BSc level)
- 4- Understanding of concrete technology and mechanics of materials

Remarks on experimental project: Students will need to have a reasonably free schedule, and will have to prioritize project activities over other obligations. Extra ECTS may be added to the project upon agreement.

Recommended literature (background)

Bentur, A., Mindess, S., 2006. Fibre Reinforced Cementitious Composites, Second Edition, Second. ed. CRC Press. Neville, A.M., 2012. Properties of Concrete, IV. ed. Prentice Hall, Harlow, UK.

- Mehta, P.K., Mehta, P.K., Monteiro, P.J.M., 2006. Concrete: microstructure, properties, and materials, III. ed. McGraw-Hill, Berkeley, Califormia.
- Bozik, Simon. 2016. "Single Fiber Pullout of Steel Fibers from Concrete, Enkelt Fiber Tilbagetrækningen Af Stålfibre Fra Beton."